Converter: Creating a User
Interface with Interface Builder

This tutorial shows you how to use Interface Builder to create the interface for a
simple application that converts Fahrenheit temperatures to Celsius. You'll see how
Interface Builder is closely tied to the Carbon Event Manager and lets you create a
useful application with very little code.

In this tutorial, you'll create a simple application that converts a Fahrenheit
temperature to Celsius. When you're done, you’'ll have an application that looks like
this:

This tutorial contains three sections, which you should complete in order:

Converter
32 degrees Fahrenheit
0 degrees Celsius

QL_J_it__ 3 f converr M

1. “Create the Converter Window” (page 2) teaches you how to create a simple
interface and shows how much the Carbon Event Manager does for you, even
when you don’t write any code.

2. “Add the Convert Button Handler” (page 14) shows you what an application
that uses the Carbon Event Manager looks like and teaches you how to create an
command handler

Converter: Creating a User Interface with Interface Builder

3. “Create the Convert Menu Item” (page 19) shows you how to add a menu to an
application and how the Carbon Event Manager lets you extend an application’s
easily.

This tutorial does not attempt to teach you Project Builder or Mac OS X
programming.

Create the Converter Window

In this section, you'll create the application’s project and interface. You'll learn how
to create a simple interface, and find out what the Carbon Event Manager can do for
you, even if you don’t write any code.

“Create the Project” (page 2)

“Open the Nib File” (page 3)

“Add the Fahrenheit Field and Label” (page 5)
“Add the Celsius Field and Label” (page 7)
“Add a Convert Button” (page 8)

“Add a Quit Button” (page 10)

“Set the Window’s Attributes” (page 12)

® N S G »N =

“Build and Run the Application” (page 13)

Create the Project

Start Project Builder by double-clicking its icon. You can find it in /Developer/
Applications/.

Choose File > New Project. Project Builder displays a dialog box with several
template projects to choose from. Select Carbon Application (Nib Based), and click
Next. Then enter Converter as the project name, choose a location, and click Finish.

2 Create the Converter Window

Converter: Creating a User Interface with Interface Builder

108 Assistant

.5 New Carbon Application (Nib Based)

Project Name: Converter

Location: ~/Projects/Converter/ f Set...

f Cancel Y f Back Y MNext @

Open the Nib File

A nib file is a way to store your application’s resources that’s new with Carbon. It’s
a XML text file that describes your application’s windows, menus, buttons, text
fields and other user interface elements. Your application can open a nib file just as
easily as it opens a resource file or a resource fork.

In the file list, double-click the main.nib file. If you can’t see the main.nib file, click
the Files tab and open the Resources group.

Create the Converter Window 3

Converter: Creating a User Interface with Interface Builder

Interface Builder launches and opens the file. It displays several windows, like

these:

Window

Application P
File ¥
Edit P

Submenu #

Item
Window P

Design
window
Palette
s
main.nip MenuBar
Menu editor C NewApplication File Edit Window]

®@0e | main.nib

rinstances ‘ Images

Nib File BE= .

window MenuBar MainWindow

m The Design Window is the window displayed when your application runs. An
application can use any number of windows, but this template contains just one.

m The Palette contains controls that you can add to your interface, just by dragging
them onto a window or a menu.

m The Menu Editor lets you edit the items that appear in your application’s menu
bar. It already contains most of the commands applications need, such as About,
Quit, Save, Close, Copy, and Past. Many of them do the right thing without your
needing to write any code, such as Quit, Copy, and Paste. For some, you do need
to write code, such as About and Save.

m The Nib File Window displays all the top level items in your nib file. This
boilerplate nib file contains a window and a menu bar.

4 Create the Converter Window

Converter: Creating a User Interface with Interface Builder

Add the Fahrenheit Field and Label

Now you'll add the text field and the label where the user will enter the Fahrenheit
temperature.
1. Drag a text field to the top left corner the window.

This will be the field where the user enters the Fahrenheit temperature.

In the palette click the Button/Text button. The text field is the white box under
the push button labeled “Button.” Drag a text field to the upper left corner of the
window.

e : 6 Window [&] (&) Carbon-Contrals 3
= O —o- = =
o [Text] == —
L3
(Button A
. @ @ UL
—
Bavel
[CheckBox StaticText

e : ———————
) RadioButton

® Radiol @ Item 1 k3|
-

O Radio2

Notice that as you drag the field onto the window, dashed blue lines appear.
These lines are Aqua guidelines, and show you where to place an object so it
compiles to the user interface guidelines for Aqua. When you drop the object, it
snaps to the nearest guidelines.

In the illustration above, there are two Aqua guidelines. They show the
recommended amount of distance between the object and the edges of the
window.

2. Enter 3?2 as the text field’s value.

Double-click the field so a blinking insertion point appears. Enter 32 and press
Return.

3. Enter the conv as text field’s signature and 128 as the text field’s ID.

Create the Converter Window 5

Converter: Creating a User Interface with Interface Builder

Select the field, choose Tools > Show Info. In the Info window, you can set all of
a control’s properties. In the Attributes section, you set attributes specific to a
particular control, such as whether a button contains a graphic or whether a
window is resizeable. In the Controls section, you set attributes that can apply
to any Carbon controls, such as its control ID and command information. In the
Size section, you can set the control’s size and position. And in the Help section,
you can assign a help tag, a piece of text that appears when the user holds the
mouse over a control.

From the pop-up menu at the top of the Inspector, select Control. In the Control
ID section, enter conv in the Signature field and 128 in the ID field. You'll use
these values later when you need to identify this field to read its value.

(&) (&) EditText Info
Control e 1

~ Control ID

Signature: conv ID: 128|

Commana

<no command> ¥

__ Options

Enabled [Hidden [} Small

When you're done, don’t close the Info window. You'll be using it later. Interface
Builder has one Info window and it displays the attributes of whatever control
is selected.

4. Drag a static text field to the right of the Fahrenheit field.

From the palette, drag the item named Static Text to the right of the field you just
created, so that you see these Aqua guidelines.

Create the Converter Window

Converter: Creating a User Interface with Interface Builder

808 Window

Carbon-Controls =

(6]
[| | =]
Text |

e
4

-

32 iStaticTextk —
\ Button . Y 1
— @ @ U
By T

— .
[7] CheckBox StaticText
O RadioButton

@ Radiol @ Item 1 K3
o

O Radio2 Gy) r | |v
O L ¥ =

™

———

The horizontal guideline lines up the baselines of the two text fields. (The
baseline is the line the text is written on.) And the vertical guideline makes sure
that the two fields are the recommended distance apart from each other.

Enter degrees Fahrenheit as the text field’s value.

Double-click the field so a blinking insertion point appears. Enter degrees
Fahrenheit and press Return.

Part of the text may be cut off since the field is too small. If that’s the case, resize
the field so it’s long enough to display it all. You can then choose Layout > Size
to Fit so it’s exactly the right size for the text.

Add the Celsius Field and Label

Now you’ll add the static text field and the label where the Celsius temperature will
appear.

1.

Create the Converter Window

Drag a static text field below the Fahrenheit text field.

This will be the field where the Celsius field appears. It’s a static text field since
the user won't be able to change its value.

From the palette, drag the item named Static Text to the area below the
Fahrenheit text field. Use the Aqua guidelines to line up the fields’ left edges and
to place the fields the recommended amount of distance apart.

Enter 0 as the text field’s value.

Converter: Creating a User Interface with Interface Builder

Double-click the field so a blinking insertion point appears. Enter 0 and press
Return.

Enter the conv as text field’s signature and 129 as the text field’s ID.

From the pop-up menu at the top of the Inspector, select Control. In the Control
ID section, enter conv in the Signature field and 129 in the ID field.

Drag a static text field to the right of the Fahrenheit field.

From the palette, drag the item named Static Text to the right of the field you just
created. Use the Aqua guidelines to make sure the baselines line up and the
fields are the recommended distance apart.

Enter degrees Celsius as the text field’s value.

Double-click the field so a blinking insertion point appears. Enter “degrees
Celsius” and press Return. If the text is cut off, resize the field so it’s long enough
to display it all. You can then choose Layout > Size to Fit so it’s exactly the right
size for the text.

Add a Convert Button

Now you’ll add the button that actually performs the conversion. In a later section,
you’ll write the handler that’s called when the user presses this button.

1.

Drag a push button below the Celsius field and label.

In the palette, the push button is in the top left corner and is labeled “Button.”
Drag it so it is the recommended distance below the Celsius label and lines up
with that label’s right edge.

Enter Convert as the button’s text.

Double-click the button so a blinking insertion point appears. Enter Convert and
press Return.

Move the button again slightly to make sure it still lines up properly with the
Aqua guidelines. You'll probably have to move it just a fraction of an inch. If you
want, choose Layout > Size to Fit so it’s just large enough to contain the text.

Enter conv as the button’s command.

From the pop-up menu at the top of the Inspector, select Control. In the
Command section, enter conv in the text field.

Create the Converter Window

Converter: Creating a User Interface with Interface Builder

[&) () Button Infa
Control I ﬂ

_ Control ID

Signature: ID: 0

Command
conv <other> 'y

_ OpuGen=

Enabled [Hidden [Small

When the user presses this button, it will send a 'conv' command. This sort of
command is new to the Carbon Event Manager and is very powerful. You can
assign the 'conv' command to any control and when the user selects that
control, the Carbon Event Manager calls the handler for it. Later on, you'll define
the handler for it. And in the last section of this tutorial you'll add a menu
command that also uses the 'conv' command

Notice the pop-up menu besides this filed contains items for many common
menu commands, including Cut, Copy, Paste, and Hide. These commands are
handled automatically by the Carbon Event Manager. You don’t need to write a
handler for them.

4. Make this the window’s default button.
From the pop-up menu at the top of the Inspector, select Attributes. In the

Button Type section, select Default. Now, this button will pulse and be selected
when the user presses Return.

Create the Converter Window 9

10

Converter: Creating a User Interface with Interface Builder

[&) (&) Button Infa

Attributes ?

Title: | Conve

__ Button Type

| O Regular & Default () Cancel

I e
Content Type: | Text Only ':]

Resource ID: 0

Icon Position:

Add a Quit Button

Now you'll add a button that quits the application when the user presses it.

1. Drag a push button to the left of the Convert button.
From the palette, drag the push button to the left of the Convert button.
2. Enter Quit as the button’s text.

Double-click the button so a blinking insertion point appears. Enter Quit and
press Return.

Move the button again slightly to make sure it still lines up properly with the
Aqua guidelines.

3. Choose Quit as the button’s command.

From the pop-up menu at the top of the Inspector, select Control. In the
Command section, Choose Quit from the pop-up menu.

Create the Converter Window

Converter: Creating a User Interface with Interface Builder

~ Command

¥ <no command>

About
Arrange in Front E
Enat Cancel
Clear
Close
Copy
Cut
Hide
Minimize
Mew
ok
Open
Page Setup
Paste
Preferences

Print =

Rdn!

2

Revert
Save
Save As
Select All
Undo
Zoom

_ Dptions

<other>

When the user presses this button, it will send a Quit command which the
Carbon Event Manager will handle for you by quitting the application. You
don’t need to write any code to accomplish this.

Create the Converter Window

11

12

Converter: Creating a User Interface with Interface Builder

Set the Window’s Attributes

Now you'll resize the window and change its name and type.

1. Resize the window

Click and drag the window ’s resize box so the Aqua guidelines show that the
Convert button is the recommended distance from the window’s edges.

2. Change the window’s name to Converter and its class to Movable Modal.
To select the window, click anywhere in its background; that is, any spot that
doesn’t contain a control. From the pop-up menu at the top of the Inspector,

select Attributes. Enter Converter as the Title, and choose Movable Modal as the
Window Class.

Window Info

o
o

Attributes ?

Title: Converter

Window Class: = Movable Modal re]
Theme Brush: = Default el
Position: = Leave As |s s
Buttons
Attributes
W Resizable [Live Resize

— _

The window should look something like this:

Create the Converter Window

Converter: Creating a User Interface with Interface Builder

(&) (&) Converter

32 degrees Fahrenheit

0 degrees Celsius

'/__QU_II_\ f convert ©

Build and Run the Application

Now you’ll run the application, and see how much the Carbon Event Manager does
for you, even when you don’t write any code.
1. In Project Builder, build and run the application.
Click the Build and Run button at the top of the project window.
-
=
Project Builder may ask you if you want to save your modified files before
building. If so, click Save All.

The Build panel slides down from the top of your project window and Project
Builder builds your application. Then, the Run panel slides down and the
application starts running.

2. Play with the running application.

The window appears, with the Fahrenheit field selected and the Convert button
pulsing. Try typing into the text field, selecting some text, copying it, cutting it,
and pasting it. All that works without your needing to write any code.

The menu bar has a full set of menus with the most common commands. Some
of them, such as Open or Save As, are just stubs until you write code for them.
Others, such as Cut, Copy, Paste, Quit, and Hide, work without any additional
code.

Note that if you press the Convert button, nothing happens. You'll enable it in
the next section.

3. Quit the application.

Create the Converter Window 13

Converter: Creating a User Interface with Interface Builder

Now press the Quit button. The application quits as though you chose the Quit
menu item, all without needing to write any code.

Add the Convert Button Handler

14

In this section, you'll write the code that handles the 'conv' event. You'll see what
an application that uses the Carbon Event Manager looks like and learn how to
create an command handler.

. “Look at the Existing Code” (page 14)
. “Declare the Event Handler” (page 15)
. “Install the Event Handler” (page 15)

1
2
3
4. “Write the Main Window Event Handler” (page 16)
5. “Write the ‘conv’ Event Handler” (page 17)

6

. “Run and Build the New Application” (page 18)

Look at the Existing Code

Now, go back to Project Builder by clicking its icon in the dock.

To look at the code, click on main.c in the project window’s file list. If you can’t see
the main.c file, click the Files tab and open the Sources group.

You only need six functions to write an application that uses the Carbon Event
Manager. Here they are, from the sample main.c file that’s in your project with the
error checking and comments removed:

CreateNibReference(CFSTR("main"), &nibRef);
SetMenuBarFromNib(nibRef, CFSTR("MainMenu"));
CreateWindowFromNib(nibRef, CFSTR("MainWindow"), &window);
DisposeNibReference(nibRef);

ShowWindow(window);

RunApplicationEventLoop();

Add the Convert Button Handler

Converter: Creating a User Interface with Interface Builder

Here’s what the statements do:

m CreateNibReference searches your application’s package for a file called
main.nib and opens it.

m SetMenuBarFromNib and CreateWindowFromNib set up the menu bar and main
window from the nib file.

m DisposeNibReference closes the nib file.

m ShowWindow displays the main window, since it was set up to be hidden by
default.

B RunApplicationEventLoop runs the main event loop.

Notice that you don’t need to initialize any of the toolboxes, nor do you need to
write your own event loop. All that’s handled for you automatically.

Declare the Event Handler

Towards the top of main.c, after #include <Carbon/Carbon.h>, type (or copy and
paste) this code:

#define kConvertCommand 'conv'

#define kConvertSignature 'conv'

#define kFahrenheitFieldID 128

#define kCelsiusFieldID 129

pascal 0SStatus MainWindowCommandHandler(EventHandlerCallRef handlerRef,
EventRef event, void *userData);

pascal void ConvertCommandHandler();

The #define statements create macros for the command, IDs, and the signature you

entered earlier. And the declarations are for the functions that handle the 'conv'
command.

Install the Event Handler

Now you'll install the handler that will handle the 'conv' command.

1. Declare some variables.

Towards the beginning of the main function, right after the 0SStatus err
statement, type (or copy and paste) this code:

Add the Convert Button Handler 15

16

Converter: Creating a User Interface with Interface Builder

EventTypeSpec commSpec = { kEventClassCommand, kEventProcessCommand };

controlSpec specifies what kind of event handler you're installing. In this case,
kEventClassCommand means it’s in the class of command events, and
kEventProcessCommand means the handler should be called when the command
needs to be processed.

2. Install the handler.

Between the ShowWindow and the RunApplicationEventLoop functions, type (or
copy and paste) this code:

InstallWindowEventHandler(window,
NewEventHandlerUPP(MainWindowCommandHandler),
1, &commSpec, (void *) window, NULL);

InstallEventHandler tells the Carbon Event Manager to call
MainWindowCommandHandler whenever it receives a command from the main
window. Notice that the second to the last parameter is for user data and that
we’re passing in a pointer to the main window. When the Carbon Even Model
calls the command handler, it will pass this pointer as an argument, so the
handler can access the text fields that are on the window.

Write the Main Window Event Handler

At the bottom of main.c, after the main function, type (or copy and paste) this
function:

pascal 0SStatus MainWindowCommandHandler(EventHandlerCallRef handlerRef,
EventRef event, void *userData)

0SStatus err = eventNotHandledErr;
HICommand command;

GetEventParameter(event, kEventParamDirectObject, typeHICommand,
NULL, sizeof(HICommand), NULL, &command);

switch(command.commandID) {
case kConvertCommand:
ConvertCommandHandler((WindowRef) userData);
err = nokrr;
break;

Add the Convert Button Handler

Converter: Creating a User Interface with Interface Builder

}

return err;

This function is called whenever the Carbon Event Manager receives a command
from the main window. It tries to handle the command, and returns noErr if it can
or eventNotHandledErr if it can’t. GetEventParameter retrieves the command and the
switch statement checks whether this function can handle the command. If the
command ID is kConvertCommand, it calls ConvertCommandHand1er, which is described
below, and returns noErr. If it can’t handle the command, it returns
eventNotHandledErr and the Carbon Event Manager tries to find someone else to
handle the command.

Write the ‘conv’ Event Handler

After the MainWindowCommandHandler, type (or copy and paste) this function:

pascal void ConvertCommandHandler(WindowRef window)

{
ControlHandle fahrenheitField, celsiusField;
ControlID fahrenheitControlID =
{ kConvertSignature, kFahrenheitFieldID };
ControllID celsiusControlID =
{ kConvertSignature, kCelsiusFieldID };
CFStringRef text;
Size actualSize;
double fahrenheitTemp, celsiusTemp;

GetControlByID(window, &fahrenheitControlID, &fahrenheitField);
GetControlByID(window, &celsiusControlID, &celsiusField);

GetControlData(fahrenheitField, 0, kControlEditTextCFStringTag,
sizeof(CFStringRef), &text, &actualSize);

fahrenheitTemp = CFStringGetDoubleValue(text);

CFRelease(text);

celsiusTemp = (fahrenheitTemp - 32.0) * 5.0 / 9.0;
text = CFStringCreateWithFormat(NULL, NULL, CFSTR("%g"), celsiusTemp);

SetControlData(celsiusField, 0, kControlEditTextCFStringTag,
sizeof(CFStringRef), &text);

Add the Convert Button Handler 17

18

Converter: Creating a User Interface with Interface Builder

CFRelease(text);
DrawOneControl(celsiusField);
}

This function reads the value from the Fahrenheit text field, converts it to Celsius,
and writes the value back out to the Celsius text field. Here’s line-by-line
description of what’s happening:

m Thetwo GetControlByID functions retrieve the Fahrenheit and Celsius text fields.
The variables farenheitControlID and celsiusControl1D contain the signature
and IDs you entered.

m GetControlData retrieves the text in the Fahrenheit field as a CFString.

m CFStringGetDoubleValue converts that string to an floating-point number, and
CFRelease releases the memory that the string used.

m The assignment statement computes the Celsius temperature.

m CFStringCreateWithFormat converts that floating-point number to a string, using
the printf-style format string "%g".

m SetControlData sets the Celsius text field to that string, and CFRelease releases
the memory that the string used.

m DrawOneControl redraws the text field with its new value.

Run and Build the New Application

Now you'll run the application and watch your new command handler at work.

1. In Project Builder, build and run the application.
Click the Build button at the top of the project window.
- |
Project Builder may ask you if you want to save your modified files before
building. If so, click Save All.
The Run panel slides down and the application starts running
2. Play with the running application.

Try entering different temperatures into the Fahrenheit field and pressing
Convert. Watch the equivalent Celsius temperature appear below.

Add the Convert Button Handler

Converter: Creating a User Interface with Interface Builder

3. Quit the application.

Create the Convert Menu Item

In this section, you'll add a menu item that performs the same command as the
Convert button, and you won’t need to write any code to do it. You'll learn how to
use Interface Builder to add a menu.

Create a Commands Menu

First, you'll create the menu that will contain the Convert command.

1. Go to Interface Builder by clicking its icon in the dock.

2. In the palette window, click the Menus button, which is the left-most button.

Here’s what the menu palette contains:

The Application, File, Edit, and Window elements are fully-loaded menus
that you can drop into your application. Note that the template application
already contains them.

The Submenu element can be either a top-level menu that you add to your
menu bar or a hierarchical menu that you add to another menu.

The Item element is a single menu item that you can add to any menu.
The blank element is a separator that you can add to any menu.

The menu icon lets you create contextual menus.

3. Drag a Submenu item to your menu window, between Edit and Window.

Create the Convert Menu Item 19

20

Converter: Creating a User Interface with Interface Builder

© O O main.nib - MenuBar 000 Carbon-Menus (=]

File Edit | Window
Submenu MLz

NewApplication

Application P
File b
Edit » ——
 Submenu ¥ ’__‘
B =

Item —

Window F

4. Rename the menu to Commands.

Double-click the word Submenu so a blinking insertion point appears. Enter
Commands and press Return.

Create a Convert Menu Item

Now, you'll add the Convert command to the menu and give it a command-key
equivalent.

1. Open the Commands menu.

Click on the word Command, and Interface Builder displays the items it
contains.

2. Rename the menu item to Convert.

Double-click the menu item so a blinking insertion point appears. Enter Convert
and press Return.

3. Assign Command-K as the menu item’s command-key equivalent.
Double-click to the right of the Convert menu item so a box appears and type k.

You may have to try double-clicking a few places before you succeed. Try
double-clicking from the right edge of the word Convert all the way to the right
edge of the menu.

The menu window should look something like this:

Create the Convert Menu Item

Converter: Creating a User Interface with Interface Builder

8O0 main.nib - MenuBar

File Edit Cm‘nmandz

Convert

MewApplication

4. Enter conv as the menu item’s command.
From the pop-up menu at the top of the Inspector, select Attributes. In the

Command section, enter conv in the text field.

8oce Menu Item Info

[Attributes ":1

Title: Convert

~ Menu Shortcut

B 4
Key: K B £
B
_ Options

E Enabled

[[] Checked

[7] Submenu Parent Choosable

[Dynamic

[7] Not Previous Alternate

[] Hidden

[Ignore Meta

~ Command

{conv }{ <other> [

Create the Convert Menu Item

22

Converter: Creating a User Interface with Interface Builder

Run and Build the New Application

Now you'll run the application, and try out the new menu command.

1. In Project Builder, build and run the application.
Click the Build and Run button at the top of the project window.
-
Project Builder may ask you if you want to save your modified files before
building. If so, click Save All.
The Run panel slides down and the application starts running.
2. Play with the running application.

Now try entering different temperatures into the Fahrenheit field and convert
them by choosing the Convert command or pressing Command-K. Watch the
equivalent Celsius temperature appear below.

3. Quit the application.

You're done!

Create the Convert Menu Item

	Converter: Creating a User �Interface with Interface Builder
	Create the Converter Window
	Create the Project
	Open the Nib File
	Add the Fahrenheit Field and Label
	Add the Celsius Field and Label
	Add a Convert Button
	Add a Quit Button
	Set the Window’s Attributes
	Build and Run the Application

	Add the Convert Button Handler
	Look at the Existing Code
	Declare the Event Handler
	Install the Event Handler
	Write the Main Window Event Handler
	Write the ‘conv’ Event Handler
	Run and Build the New Application

	Create the Convert Menu Item
	Create a Commands Menu
	Create a Convert Menu Item
	Run and Build the New Application

