
A New, Flexible Framework for Audio and Image Synthesis.

James McCartney
3403 Dalton St.

Austin, TX 78745
james@audiosynth.com

Abstract.

A new synthesis framework has been developed which has many interesting features. The following
buzzwords briefly describe its features: real-time, controllable, dynamically editable, extensible, portable,
lightweight, efficient, embeddable. Unit generators called Units are linked into Graphs which are
themselves Units. Unit connections may be changed during execution. Graphs containing cycles are
allowed. All Units can execute at full sample rate or at one sample per buffer rate. Graphs can contain
subgraphs. Subgraphs can have differing block sizes from their parents. Physical models requiring single
sample feedback can be implemented in a Graph with a single sample buffer size and this Graph can be
embedded in another Graph having a larger buffer size. FFTs requiring large buffer sizes may similarly
be embedded in Graphs with smaller buffer sizes. Units may be reset individually during execution.
Modifiers may be applied to any unit while running to control its execution. Modifiers for Pause, Mute,
Hold, and Freeze are provided. The engine can synthesize video as well as audio by simply interpreting
the samples as a stream of pixel values in a single plane of an image. A number of image specific Units
are planned. There is already a large library of Units which are applicable to both audio and video. New
Units are added via subclassing. The library is lightweight, implemented in C++ and has a small easy to
use interface. It is designed to be able to be embedded easily into other software frameworks. Great
attention has been paid to efficiency and clarity. This paper can only give a brief overview and show an
example of a plug in for SuperCollider.

To increase efficiency and enable simpler plug
ins for version 3 of the SuperCollider synthesis
programming language environment, the
synthesis engine has been rewritten as a C++
framework. During this development, a number
of innovations were incorporated, while
retaining previous features that make
SuperCollider powerful. The important features
retained were: block calculation, dual rate system
(control rate and audio rate), dynamic
instantiation of all unit generators including long
delay lines, variable block size per voice, ability
to spawn subgraphs with single sample accuracy
sample accurate end time stamps. Nearly all but
a few rarely used or obsolete unit generators
have been or are in the process of being ported
to the new framework.

ports. The InputsChanged() method is called
when all the input connections are valid initially
and again anytime an input is changed. This
method is responsible for setting a pointer to a
method for calculating the output samples for the
Unit.

The Reset() method is called each time a Unit is
started. At the time it is called all inputs are
valid. Its responsibility is to initialize any data
specific to the Unit and to calculate its first
output sample.

In addition one must write one or more functions
for calculating the output samples of the Unit.
These functions are installed by the
InputsChanged() method and are not an override
of a virtual function, since there may be any
number of them for a given Unit. The reason
one might have more than one is to treat as
efficiently as possible various combinations of
input rates. There are a few means of controlling

Unit generators are represented in the framework
as instances of the Unit class. Writing a plug in
involves providing a constructor and destructor,
and overriding a few methods. The constructor
is responsible for allocating the Input and Output

mailto:james@audiosynth.com

combinatorial explosion of rates, which will not
be dealt with here.

graphs that have a block size which is an integer
multiple or subdivision of the parent. This
allows parts of a graph which may require large
or single sample buffer sizes to be segregated
allowing the rest of the graph to be performed
more efficiently.

One advantage of the block calculation design
over a single sample compiled instrument design
is that unit generators can be added, removed,
repatched, or have modifiers added to thier
behaviour while running. All of these new
features were incorporated into the new
framework.

The synthesis engine framework is independant
of the SuperCollider language and environment
and can be easily separated to be linked into
other programs. The framework includes special
memory management routines for allocating
memory in real time. Multiple copies of the
engine can operate simultaneously in separate
threads.

All Units may have modifiers added that alter the
behaviour of the Unit. These modifiers install
their own runtime function into the Unit and
save the original so that they may alter the
execution of the Unit. Several modifiers are built
in, including a fade output level modifier, a
modifier which fades the Unit to zero and
generates and end time stamp, hold current value
while still running, hold current value and pause
execution, fade to zero and pause execution.

Following is complete working source code for
sawtooth oscillator plug in for SuperCollider
version 3. Because of inheritance, this Unit can
automatically support audio rate and control rate
instances, repatching, modifiers and all other
features of the SuperCollider engine.

In addition to variable block size per spawned
graph, the new framework permits embedded

///
// Example SuperCollider unit generator plug in: A Sawtooth oscillator

#include "UnitGlue.h"
#include "SCPlugin.h"
#include "MulAddUnit.h"

#pragma export on
// export the code fragment's loadPlugIn function to the linker

extern "C" { SCPlugIn* loadPlugIn(void); }
#pragma export off

///

namespace SCSynth {

class MyLFSaw : public MulAddUnit
// MulAddUnit is for single output Units that have a mul and add input

{
public:

MyLFSaw(World* inWorld, int inCalcRate, void* inClientData);

protected:
virtual void InputsChanged(); // called when inputs change
virtual void Reset(); // called when Unit is started

private:
void next_a(int inNumSamples); // run function for audio rate freq input
void next_k(int inNumSamples); // run function for control rate freq input

// Samp is a typedef for the output sample type, currently float.
Samp mPhase, mFreqMul;
Input mIn[4]; // inputs are: frequency, initial phase, multiply, add

};

MyLFSaw::MyLFSaw(World* inWorld, int inCalcRate, void* inClientData)
: MulAddUnit(inWorld, inCalcRate, inClientData), mPhase(0.f)

{
MakeInputs(4, mIn); // allocate inputs
// tell the engine that the phase input is only read upon Reset().
SetReadRate(1, read_Reset);

}

void MyLFSaw::InputsChanged()
{

if (InputRate(0) == calc_FullRate) { // choose a run function based on freq input rate
SetRunFunc((UnitFunc)&MyLFSaw::next_a); // freq is audio rate

} else {
SetRunFunc((UnitFunc)&MyLFSaw::next_k); // freq is control rate

}
}

void MyLFSaw::Reset()
{

MulAddUnit::Reset(); // call inherited Reset method
mFreqMul = 2.f * SampleDur(); // calculate frequency multiplier
mPhase = ZIN0(1); // get the initial phase value

next_k(1); // calculate first output sample
}

void MyLFSaw::next_a(int inNumSamples)
{

// freq is audio rate
Samp *out = ZOUT(0); // get a pointer to the output buffer
Samp *freq = ZIN(0); // get a pointer to the freq input buffer

Samp freqmul = mFreqMul; // load instance variables into registers
Samp phase = mPhase;

// LOOP, ZXP ZOUT and ZIN are macros that allow recompilation for various architectures
// while maintaining the most efficient pointer accesses and loop construction.
LOOP(inNumSamples,

ZXP(out) = phase; // write output
phase += ZXP(freq) * freqmul; // increment phase
if (phase >= 1.f) phase -= 2.f; // wrap output between -1 and +1
else if (phase <= -1.f) phase += 2.f;

);
mPhase = phase; // restore register to instance variable
MulAdd(inNumSamples); // perform multiply & add inputs

}

void MyLFSaw::next_k(int inNumSamples)
{

// freq is control rate
Samp *out = ZOUT(0); // get a pointer to the output buffer
Samp freq = ZIN0(0) * mFreqMul; // calculate freq

Samp phase = mPhase; // load instance variable into register

if (freq >= 0.f) { // choose a loop based on sign of freq
LOOP(inNumSamples,

ZXP(out) = phase; // write output
phase += freq; // increment phase
if (phase >= 1.f) phase -= 2.f; // wrap output between -1 and +1

);
} else {

LOOP(inNumSamples,
ZXP(out) = phase; // write output
phase += freq; // increment phase
if (phase <= -1.f) phase += 2.f; // wrap output between -1 and +1

);
}
mPhase = phase; // restore register to instance variable
MulAdd(inNumSamples); // perform multiply & add inputs

}

} // namespace SCSynth

///

// define the plug in class
class MyPlugIn : public SCPlugIn
{
public:

MyPlugIn() {} // constructor for plug in
virtual ~MyPlugIn() {} // destructor for plug in

// AboutToCompile is called each time the SC class library is compiled.
virtual void AboutToCompile();

};

void MyPlugIn::AboutToCompile()
{

// template for installing the Unit in the SC class library
defineUnitClass<MyLFSaw>();

}

///

// This function is called when the plug in is loaded into SC.
// It returns an instance of MyPlugIn.
SCPlugIn* loadPlugIn()
{

return new MyPlugIn();
}

References

McCartney, James. 1996. "SuperCollider, a new real time synthesis language." Proceedings
ICMC1996, Hong Kong, pp 257-258.

McCartney, James. 1998. "Continued Evolution of the SuperCollider Real Time Synthesis
Environment." Proceedings ICMC1998, Ann Arbor Michigan, pp 133-136.

